Regional Leaf Area Index Retrieval Based on Remote Sensing: The Role of Radiative Transfer Model Selection
نویسندگان
چکیده
Physically-based approaches for estimating Leaf Area Index (LAI) using remote sensing data rely on radiative transfer (RT) models. Currently, many RT models are freely available, but determining the appropriate RT model for LAI retrieval is still problematic. This study aims to evaluate the necessity of RT model selection for LAI retrieval and to propose a retrieval methodology using different RT models for different vegetation types. Both actual experimental observations and RT model simulations were used to conduct the evaluation. Each of them includes needleleaf forests and croplands, which have contrasting structural attributes. The scattering from arbitrarily inclined leaves (SAIL) model and the four-scale model, which are 1D and 3D RT models, respectively, were used to simulate the synthetic test datasets. The experimental test dataset was established through two field campaigns conducted in the Heihe River Basin. The results show that the realistic representation of canopy structure in RT models is very important for LAI retrieval. If an unsuitable RT model is used, then the root mean squared error (RMSE) will increase from 0.43 to 0.60 in croplands and from 0.52 to 0.63 in forests. In addition, an RT model’s potential to retrieve LAI is limited by the availability of a priori information on RT model OPEN ACCESS Remote Sens. 2015, 7 4605 parameters. 3D RT models require more a priori information, which makes them have poorer generalization capability than 1D models. Therefore, physically-based retrieval algorithms should embed more than one RT model to account for the availability of a priori information and variations in structural attributes among different vegetation types.
منابع مشابه
Remote Sensing Based Retrieval of Snow Cover Properties Case Study (Shirkooh Mountain Yazd, Iran)
Snow cover area is one of the most important criteria to calculate snow melt runoff. This can have an effect on the biology of the plant and the environment of a region. Using the catchment basin physical characteristic to calculate snow cover area is a conventional method, though its accuracy is not good enough. Most of the useful methods in calculating snow cover area are based on satellite i...
متن کاملRemote Sensing Based Retrieval of Snow Cover Properties Case Study (Shirkooh Mountain Yazd, Iran)
Snow cover area is one of the most important criteria to calculate snow melt runoff. This can have an effect on the biology of the plant and the environment of a region. Using the catchment basin physical characteristic to calculate snow cover area is a conventional method, though its accuracy is not good enough. Most of the useful methods in calculating snow cover area are based on satellite i...
متن کاملForest Canopy LAI and Vertical FAVD Profile Inversion from Airborne Full-Waveform LiDAR Data Based on a Radiative Transfer Model
Forest canopy leaf area index (LAI) is a critical variable for the modeling of climates and ecosystems over both regional and global scales. This paper proposes a physically based method to retrieve LAI and foliage area volume density (FAVD) profile directly from full-waveform Light Detection And Ranging (LiDAR) data using a radiative transfer (RT) model. First, a physical interaction model bet...
متن کاملRetrievals of Canopy Biophysical Variables Using Multi-temporal Remote Sensing Data
The integrated application of multi-source and multi-temporal remote sensing data is the trend of remote sensing application research, and it is also the practical need to solve the inversion problem of remote sensing. In this paper, a method is developed to retrieve canopy biophysical variables using multi-temporal remote sensing data. The inherent change rules of biophysical variables are int...
متن کاملCalibration of a Species-Specific Spectral Vegetation Index for Leaf Area Index (LAI) Monitoring: Example with MODIS Reflectance Time-Series on Eucalyptus Plantations
The leaf area index (LAI) is a key characteristic of forest ecosystems. Estimations of LAI from satellite images generally rely on spectral vegetation indices (SVIs) or radiative transfer model (RTM) inversions. We have developed a new and precise method suitable for practical application, consisting of building a species-specific SVI that is best-suited to both sensor and vegetation characteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015